288 research outputs found

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators

    Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    No full text
    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR “biological window” as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications

    A superconvergent representation of the Gersten-Nitzan and Ford-Webber nonradiative rates

    Full text link
    An alternative representation of the quasistatic nonradiative rates of Gersten and Nitzan [J. Chem. Phys. 1981, 75, 1139] and Ford and Weber [Phys. Rep. 1984, 113, 195] is derived for the respective parallel and perpendicular dipole orientations. Given the distance d of a dipole from a sphere surface of radius a, the representations comprise four elementary analytic functions and a modified multipole series taking into account residual multipole contributions. The analytic functions could be arranged hierarchically according to decreasing singularity at the short distance limit d ---> 0, ranging from d^{-3} over d^{-1} to ln (d/a). The alternative representations exhibit drastically improved convergence properties. On keeping mere residual dipole contribution of the modified multipole series, the representations agree with the converged rates on at least 99.9% for all distances, arbitrary particle sizes and emission wavelengths, and for a broad range of dielectric constants. The analytic terms of the representations reveal a complex distance dependence and could be used to interpolate between the familiar d^{-3} short-distance and d^{-6} long-distance behaviors with an unprecedented accuracy. Therefore, the representations could be especially useful for the qualitative and quantitative understanding of the distance behavior of nonradiative rates of fluorophores and semiconductor quantum dots involving nanometal surface energy transfer in the presence of metallic nanoparticles or nanoantennas. As a byproduct, a complete short-distance asymptotic of the quasistatic nonradiative rates is derived. The above results for the nonradiative rates translate straightforwardly to the so-called image enhancement factors Delta, which are of relevance for the surface-enhanced Raman scattering.Comment: 30 pages including 6 figure

    Terahertz All-Optical Modulation in a Silicon-Polymer Hybrid System

    Get PDF
    Although Gigahertz-scale free-carrier modulators have been previously demonstrated in silicon, intensity modulators operating at Terahertz speeds have not been reported because of silicon's weak ultrafast optical nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer integrated waveguide device, based on the all-optical Kerr effect - the same ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz. We showed experimentally that the ultrafast mechanism of this modulation functions at the optical frequency through spectral measurements, and that intensity modulation at frequencies in excess of 1 THz can be obtained in this device. By integrating optical polymers through evanescent coupling to high-mode-confinement silicon waveguides, we greatly increase the effective nonlinearity of the waveguide for cross-phase modulation. The combination of high mode confinement, multiple integrated optical components, and high nonlinearities produces all-optical ultrafast devices operating at continuous-wave power levels compatible with telecommunication systems. Although far from commercial radio frequency optical modulator standards in terms of extinction, these devices are a first step in development of large-scale integrated ultrafast optical logic in silicon, and are two orders of magnitude faster than previously reported silicon devices.Comment: Under consideration at Nature Material

    Absorption Enhancement in Peridinin–Chlorophyll–Protein Light-Harvesting Complexes Coupled to Semicontinuous Silver Film

    Get PDF
    We report on experimental and theoretical studies of plasmon-induced effects in a hybrid nanostructure composed of light-harvesting complexes and metallic nanoparticles in the form of semicontinuous silver film. The results of continuous-wave and time-resolved spectroscopy indicate that absorption of the light-harvesting complexes is strongly enhanced upon coupling with the metallic film spaced by 25 nm of a dielectric silica layer. This conclusion is corroborated by modeling, which confirms the morphology of the silver island film

    Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Get PDF
    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance–induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell

    All-optical routing and switching for three-dimensional photonic circuitry

    Get PDF
    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits

    Efficient self-phase modulation in submicron silicon-on-insulator waveguides

    No full text
    We investigate experimentally and theoretically self-phase modulation and group velocity dispersion induced spectral broadening of picosecond pulses in silicon wires. Already for very low peak powers the limit for dense wavelength demultiplexing is reached. © 2005 Optical Society of America
    corecore